an introduction to agent-based modeling wilensky pdf

an introduction to agent-based modeling wilensky pdf provides a comprehensive overview of this powerful computational approach, exploring its core principles, applications, and the practical steps involved in creating and analyzing agent-based models. This article delves into the fundamental concepts of agents, environments, and interactions, as well as the benefits of using agent-based modeling (ABM) for understanding complex systems. We will also touch upon resources, including the significance of the Wilensky PDF for learning and implementing ABM, making it an indispensable guide for researchers, students, and anyone interested in simulating and analyzing emergent behavior.

- Understanding Agent-Based Modeling
- The Core Components of Agent-Based Models
- Why Use Agent-Based Modeling?
- Key Concepts and Terminology in ABM
- Exploring the Wilensky PDF and Related Resources
- Applications of Agent-Based Modeling
- Building and Analyzing Agent-Based Models
- The Future of Agent-Based Modeling

Understanding Agent-Based Modeling

Agent-based modeling (ABM) is a computational simulation technique used to understand complex systems by modeling them as collections of autonomous agents that interact with each other and their environment. Unlike traditional top-down modeling approaches, ABM focuses on the bottom-up emergence of macroscopic patterns from the microscopic behaviors and interactions of individual agents. This paradigm shift allows for the exploration of phenomena that arise not from central control, but from the collective actions of simple decision-making units. The study of emergent properties, where the whole is greater than the sum of its parts, is a central theme in agent-based modeling.

The Core Components of Agent-Based Models

At its heart, an agent-based model comprises three fundamental components: agents, an environment, and interactions. Understanding these elements is crucial for grasping how ABM functions and for effectively constructing one's own simulations. The complexity of the model arises from the interplay of these basic building blocks, leading to sophisticated system-level behaviors.

Agents: The Autonomous Entities

Agents are the fundamental units within an agent-based model. They are typically defined as autonomous entities possessing their own state, rules, and behaviors. Each agent acts independently, making decisions based on its internal logic and the information it perceives from its environment or other agents. The characteristics and capabilities of these agents can vary widely, from simple reactive entities to sophisticated agents with learning capabilities and memory. The definition of an agent is central to the success of any agent-based simulation.

The Environment: The Setting for Interaction

The environment provides the context within which agents exist and interact. It can be a static or dynamic space, with defined properties and resources. The environment influences agent behavior by providing stimuli, constraints, and opportunities. It can be a simple grid, a complex geographical map, or even an abstract network. The properties of the environment, such as its size, topology, and the availability of resources, significantly impact the emergent behavior of the system. Effective environmental design is critical for realistic ABM.

Interactions: The Dynamics of the System

Interactions are the processes by which agents influence each other and the environment. These can be direct, such as communication or competition between agents, or indirect, such as an agent modifying the environment, which then affects other agents. The rules governing these interactions are as varied as the agents themselves and are key to generating complex system dynamics. The analysis of these interactions is what allows researchers to study emergent phenomena. Patterns of interaction are what drive macroscopic change.

Why Use Agent-Based Modeling?

Agent-based modeling offers distinct advantages for studying complex systems where traditional analytical methods fall short. Its ability to capture heterogeneity, emergent properties, and non-linear dynamics makes it a powerful tool across numerous disciplines. The insights gained from ABM can be invaluable for understanding and predicting system behavior.

Capturing System Complexity and Heterogeneity

Many real-world systems are characterized by a high degree of complexity and heterogeneity, meaning they are composed of diverse entities with unique characteristics and behaviors. ABM excels at representing this diversity, as each agent can be programmed with individual attributes and decision-making rules. This allows for a more realistic depiction of systems compared to aggregate models that treat entities as uniform. Understanding heterogeneity is a key benefit.

Studying Emergent Behavior

One of the most compelling reasons to use agent-based modeling is its capacity to study emergent behavior. Emergence refers to the appearance of macroscopic patterns and properties that arise from the collective interactions of simple, individual agents, but are not explicitly programmed into the agents themselves. ABM allows researchers to observe how these macro-level phenomena, such as flocking behavior in birds or market crashes, arise from micro-level rules. The study of emergent properties is a hallmark of ABM.

Exploring "What-If" Scenarios

ABM is an excellent tool for conducting "what-if" analyses and exploring counterfactual scenarios. By modifying agent rules, environmental conditions, or initial parameters, researchers can simulate how a system might respond to different interventions, policies, or external shocks. This capability is invaluable for planning, risk assessment, and policy design in fields ranging from economics and social sciences to ecology and urban planning. Testing different scenarios is a primary use case.

Key Concepts and Terminology in ABM

A solid understanding of ABM terminology is essential for anyone delving into this field. These concepts

provide the language and framework for discussing, designing, and analyzing agent-based models effectively. Familiarity with these terms will greatly enhance comprehension and application of ABM principles.

Autonomy

Autonomy refers to the capacity of an agent to act independently and make its own decisions without external control. Each agent operates based on its internal state and programmed rules, reacting to its perceived environment. This independence is a defining characteristic of agents in ABM, differentiating them from simple computational objects.

Heterogeneity

Heterogeneity in ABM refers to the diversity among agents within a model. Agents can differ in their attributes, goals, behaviors, and decision-making processes. This diversity is crucial for accurately representing real-world systems where individuals or entities are rarely identical. Modeling heterogeneity is a key strength of ABM.

Emergence

Emergence is the phenomenon where complex, macroscopic patterns and behaviors arise from the simple interactions of individual agents. These emergent properties are not explicitly programmed into the agents but manifest as a result of their collective actions. Examples include the formation of cities, the spread of epidemics, or the evolution of social norms.

State and Behavior

An agent's state represents its current condition or attributes (e.g., its location, energy level, beliefs). Its behavior encompasses the actions it takes in response to its state and environmental inputs, guided by its rules. The interplay between an agent's state and its programmed behavior drives the simulation's dynamics.

Interaction Rules

Interaction rules define how agents perceive and respond to other agents and their environment. These rules dictate communication, cooperation, competition, and other forms of engagement. The specific design of interaction rules is critical for shaping the emergent properties of the model. Effective interaction rules are key to ABM.

Exploring the Wilensky PDF and Related Resources

For those seeking to learn and implement agent-based modeling, resources like the Wilensky PDF are invaluable. These materials often provide foundational knowledge, practical guidance, and examples that can significantly accelerate the learning curve. Understanding where to find and how to utilize these resources is a vital step for aspiring ABM practitioners.

The Significance of the Wilensky PDF

Daniel Wilensky's work, often found in PDF format, has been instrumental in introducing and teaching agent-based modeling, particularly through platforms like NetLogo. His materials typically offer clear explanations of core ABM concepts, step-by-step tutorials for building models, and illustrative examples of complex systems. The Wilensky PDF serves as a foundational text for many beginners, providing a practical entry point into the world of ABM development and analysis. Access to such a PDF is often a starting point for many.

NetLogo and its Educational Resources

NetLogo is a widely used, free, multi-agent programmable modeling environment designed for the simulation of natural and social phenomena. It is particularly well-suited for educational purposes and research due to its user-friendly interface and powerful capabilities. Many online resources, including tutorials, model libraries, and documentation, are available to support NetLogo users, often referencing or built upon the principles outlined in Wilensky's materials. The NetLogo website is a treasure trove of ABM learning materials.

Other Key ABM Learning Platforms

Beyond NetLogo and specific PDFs, a variety of other platforms and institutions offer resources for learning agent-based modeling. These include online courses, academic textbooks, research papers, and specialized software. Engaging with a diverse set of resources can provide a more comprehensive understanding of ABM theory and practice, and expose learners to different modeling paradigms and applications. Continuous learning is essential in ABM.

Applications of Agent-Based Modeling

The versatility of agent-based modeling allows it to be applied across a vast spectrum of scientific and practical domains. Its ability to simulate complex, interacting systems makes it an ideal tool for gaining insights into phenomena that are difficult to study through other means. The range of ABM applications is continuously expanding.

Social Sciences and Economics

In social sciences and economics, ABM is used to model the spread of opinions, the dynamics of markets, the formation of social networks, urban segregation, and collective behavior during crises. It helps researchers understand how individual decisions and interactions lead to macro-level social and economic outcomes, such as economic inequality or the diffusion of innovation. Modeling economic systems is a common application.

Ecology and Environmental Science

Ecological applications include modeling predator-prey dynamics, species migration, the spread of diseases in wildlife populations, and the impact of environmental changes on ecosystems. ABM can simulate how individual organisms interact with each other and their environment, leading to emergent patterns like population cycles or the distribution of biodiversity. Understanding ecological systems is a key area for ABM.

Epidemiology and Public Health

Agent-based models are crucial for simulating the spread of infectious diseases. By representing individuals as agents with varying behaviors, contact patterns, and susceptibilities, researchers can explore the effectiveness of different intervention strategies, such as vaccination campaigns, social distancing, or quarantine measures, and predict epidemic trajectories. Public health interventions are often studied using

Urban Planning and Transportation

ABM can be used to model pedestrian movement in crowded spaces, traffic flow in urban networks, and the spatial distribution of populations. This allows urban planners and transportation engineers to test different infrastructure designs, traffic management strategies, and land-use policies to optimize efficiency, safety, and sustainability. Simulating urban dynamics is an important application.

Building and Analyzing Agent-Based Models

Constructing and analyzing an agent-based model involves a systematic process that moves from conceptualization to validation. This process requires careful planning, implementation, and interpretation of simulation results. A robust methodology is essential for deriving meaningful insights from ABM.

Model Design and Conceptualization

The initial phase involves clearly defining the research question, identifying the key agents and their attributes, specifying the environment, and outlining the interaction rules. This conceptualization phase is critical for ensuring that the model accurately reflects the system being studied and is capable of addressing the research objectives. A well-defined conceptual model is the foundation of good ABM.

Implementation in Simulation Software

Once the conceptual model is established, it is translated into a computational model using ABM software like NetLogo, AnyLogic, or Repast. This involves programming the agent behaviors, environmental dynamics, and interaction rules. The choice of software often depends on the complexity of the model and the specific requirements of the simulation. Software implementation is a hands-on stage.

Calibration and Validation

Calibration involves adjusting model parameters so that the simulation output closely matches real-world data. Validation is the process of assessing whether the model accurately represents the phenomenon of

interest. This often involves comparing simulation results with empirical observations or other established models. Rigorous validation is crucial for the credibility of ABM results.

Sensitivity Analysis and Interpretation

Sensitivity analysis explores how changes in model parameters or assumptions affect the simulation outcomes. This helps to identify which factors are most influential and to understand the robustness of the model's predictions. Interpreting the results involves drawing conclusions about the system's behavior based on the simulation outputs, often revealing emergent patterns and insights.

The Future of Agent-Based Modeling

The field of agent-based modeling is continuously evolving, driven by advancements in computational power, data availability, and theoretical understanding. Future developments promise even more sophisticated and impactful applications of ABM across a wider range of disciplines. The ongoing progress in ABM is exciting.

Integration with Other Modeling Techniques

Future ABM research will likely see greater integration with other modeling techniques, such as system dynamics, machine learning, and data assimilation methods. Combining the strengths of different approaches can lead to more comprehensive and powerful analytical tools for tackling complex problems. Interdisciplinary integration is key.

Big Data and Machine Learning in ABM

The increasing availability of big data offers new opportunities to inform and calibrate ABM. Machine learning techniques can also be employed to develop more sophisticated agent behaviors, analyze complex simulation outputs, and automatically discover emergent patterns. The synergy between big data, machine learning, and ABM is a promising frontier. Leveraging data is paramount.

Enhanced Visualization and Interactive Tools

Developments in visualization and interactive tools will make ABM more accessible and intuitive for researchers and practitioners alike. Advanced graphical representations and user-friendly interfaces will facilitate better understanding of simulation dynamics and the communication of results. Engaging visualizations are vital for understanding.

Frequently Asked Questions

What is agent-based modeling (ABM) and what is its core concept, particularly as introduced in Wilensky's work?

Agent-based modeling (ABM) is a computational modeling paradigm that simulates the actions and interactions of autonomous agents within a system to understand the behavior of the system as a whole. As introduced by Wilensky, the core concept is 'bottom-up' modeling: complex system-level phenomena emerge from the simple rules and interactions of individual, independent agents.

What are the key components of an agent in an ABM, as typically described in introductions like Wilensky's?

In ABM, an agent is generally defined by its state (attributes, beliefs, knowledge), its behaviors (actions it can perform), and its rules for decision-making and interaction. These rules determine how an agent perceives its environment, reacts to stimuli, and influences other agents or the environment itself.

What are some common applications or domains where agent-based modeling is applied, as might be found in a Wilensky PDF?

ABM finds applications in diverse fields. Common examples include simulating social phenomena (e.g., opinion dynamics, crowd behavior), ecological systems (e.g., predator-prey relationships, disease spread), economic markets (e.g., stock trading, consumer behavior), urban planning, and even traffic flow.

How does ABM differ from traditional top-down modeling approaches, and why is this distinction important?

Traditional top-down modeling often relies on aggregate-level equations and assumptions about uniform behavior. ABM, in contrast, is bottom-up, focusing on individual heterogeneity and emergent properties. This distinction is important because it allows for the study of complex, non-linear dynamics and the impact of individual variations that might be missed by aggregate models.

What is the role of 'emergence' in agent-based modeling, and how is it central to understanding ABM's power?

Emergence refers to the appearance of macro-level patterns or behaviors in a system that are not explicitly programmed into the individual agents. These emergent phenomena arise from the interactions of agents following their simple rules. Understanding emergence is central to ABM because it's often the very purpose of the model – to explain how complex, seemingly intelligent behavior can arise from simple constituent parts.

What are some potential benefits of using agent-based modeling, as highlighted in introductory materials?

Key benefits of ABM include its ability to capture heterogeneity, model complex interactions, explore 'what-if' scenarios, generate emergent behavior for analysis, and provide intuitive explanations of system dynamics. It's particularly useful for studying systems where individual behavior and interactions are critical drivers of overall outcomes.

What are the typical steps involved in building an agent-based model, as a beginner might learn from a Wilensky resource?

The typical steps include: 1) defining the problem and research question, 2) identifying the agents and their key attributes and behaviors, 3) specifying the rules for agent interaction and decision-making, 4) designing the environment or space in which agents operate, 5) implementing the model using ABM software, 6) calibrating and validating the model, and 7) running simulations to analyze emergent patterns and answer the research question.

Additional Resources

Here are 9 book titles related to an introduction to agent-based modeling, with short descriptions:

- 1. Agent-Based and Individual-Based Modeling: A Practical Introduction
- This book offers a hands-on approach to understanding agent-based modeling (ABM). It covers the fundamental concepts, common modeling patterns, and practical implementation techniques. Readers will learn how to design, build, and analyze agent-based models for a variety of applications.
- 2. Introduction to Agent-Based Modeling: An Overview of Concepts and Tools

 This text provides a comprehensive yet accessible introduction to the core principles of ABM. It explores the theoretical underpinnings of agent behavior, interaction, and emergence. The book also surveys various software tools and platforms commonly used for creating and simulating agent-based models.
- 3. Modeling Social Behavior: An Agent-Based Approach

Focused on social sciences, this book introduces the power of ABM for understanding complex social phenomena. It explains how to represent individual agents and their interactions to generate macro-level social patterns. The text highlights applications in areas like opinion dynamics, crowd behavior, and organizational studies.

4. Complex Systems Science: An Introduction with Agent-Based Modeling

This book positions ABM as a key tool within the broader field of complex systems science. It delves into concepts such as feedback loops, nonlinearity, and emergent properties, all through the lens of agent-based simulations. Readers gain an understanding of how simple rules can lead to intricate system-level behaviors.

5. Growing Artificial Societies: Social Science from the Bottom Up

This foundational text introduces the concept of building artificial societies to study social dynamics. It emphasizes the "bottom-up" approach of ABM, where complex societal outcomes arise from the interactions of simple individual agents. The book explores key insights derived from simulating various social processes.

6. Agent-Based Modeling and Simulation: An Introduction for Biologists

Tailored for a biological audience, this book demonstrates how ABM can be used to model ecological and evolutionary processes. It covers topics like predator-prey dynamics, disease spread, and population genetics through agent-based simulations. The text guides biologists in applying ABM to their research questions.

7. Understanding and Building Agent-Based Models: A Practical Guide

This practical guide walks readers through the entire process of agent-based modeling, from conceptualization to interpretation of results. It provides step-by-step instructions and examples for building models. The book aims to equip readers with the skills to create their own ABM simulations.

8. Agent-Based Modeling: First Concepts and Tools

This introductory resource focuses on the essential building blocks of agent-based modeling. It clearly explains what agents are, how they behave, and how their interactions lead to system-level behavior. The book also introduces popular software environments for developing and running ABM simulations.

9. Introduction to Agent-Based Modeling with NetLogo

This book offers a hands-on introduction to agent-based modeling specifically using the NetLogo platform. It provides practical tutorials and examples that allow readers to immediately start building and experimenting with models. The text covers fundamental ABM concepts within the context of this widely-used simulation environment.

An Introduction To Agent Based Modeling Wilensky Pdf

Find other PDF articles:

An Introduction to Agent-Based Modeling: A Deep Dive into Wilensky's Work and Beyond

Unraveling the complexities of agent-based modeling (ABM) using Wilensky's seminal work as a foundation reveals a powerful tool for simulating complex systems and gaining insights into emergent behavior. This approach, detailed in various publications and most notably exemplified in U. Wilensky's readily accessible resources (often referred to as the "Wilensky PDF"), has significant implications across numerous fields, from economics and sociology to biology and ecology. Understanding ABM allows researchers and practitioners to model intricate interactions between individual agents and observe the macroscopic patterns that arise from these micro-level interactions. This in-depth exploration delves into the core concepts, practical applications, and recent advancements in ABM, leveraging Wilensky's contributions as a springboard for a comprehensive understanding.

This ebook, titled "Mastering Agent-Based Modeling: A Comprehensive Guide Inspired by Wilensky," will cover the following:

Introduction to Agent-Based Modeling: Defining ABM, its core principles, and its distinctions from other modeling techniques.

Key Concepts in ABM: Exploring agents, environments, rules, emergence, and model validation. NetLogo and Other ABM Software: A practical guide to using NetLogo, a popular platform for ABM development, and a brief overview of alternative software options.

Building Your First ABM: A step-by-step tutorial on creating a simple ABM model, focusing on model design and implementation.

Advanced ABM Techniques: Exploring more sophisticated ABM techniques, such as agent heterogeneity, spatial interactions, and network structures.

Case Studies in ABM: Examining successful applications of ABM across various domains, including examples from Wilensky's work.

Model Validation and Verification: Understanding the critical aspects of ensuring model reliability and accuracy.

Interpreting ABM Results: Techniques for analyzing and drawing meaningful conclusions from ABM simulations.

Conclusion and Future Directions: Summarizing key takeaways and discussing the future potential of ABM.

Introduction to Agent-Based Modeling: This chapter will lay the groundwork, defining what ABM is, clarifying its core tenets, and differentiating it from other modeling approaches like system dynamics or differential equations. It will emphasize the bottom-up approach of ABM, focusing on the interactions of individual agents to understand system-level behaviors.

Key Concepts in ABM: This section dives into the essential building blocks of ABM. We'll explore the definition and characteristics of agents, the nature of the environment they inhabit, the rules

governing their behavior, the concept of emergence (where macroscopic patterns arise from microscopic interactions), and the crucial process of validating ABM models to ensure their accuracy and relevance.

NetLogo and Other ABM Software: This chapter provides a practical introduction to NetLogo, a user-friendly and widely used platform for ABM development. It will include a step-by-step guide to setting up NetLogo, creating simple models, and utilizing its features. We'll also briefly discuss alternative software options, such as MASON, Repast Simphony, and AnyLogic, highlighting their strengths and weaknesses.

Building Your First ABM: This hands-on chapter guides readers through the process of creating a basic ABM model. The tutorial will involve a step-by-step construction of a simple model, emphasizing model design principles, implementing agent behaviors, defining environmental parameters, and running the simulation.

Advanced ABM Techniques: This chapter will expand upon the fundamentals, introducing more sophisticated ABM techniques, including modeling agent heterogeneity (variations in agent characteristics), incorporating spatial interactions and movement patterns, and utilizing network structures to represent relationships between agents.

Case Studies in ABM: This section will explore real-world applications of ABM, drawing examples from diverse fields, including some inspired by Wilensky's publications and research. Each case study will analyze the model's structure, its strengths, its limitations, and the insights it provided.

Model Validation and Verification: This crucial chapter will delve into the methodologies for ensuring the accuracy and reliability of ABM models. Topics will include sensitivity analysis, parameter estimation, comparison with empirical data, and various validation techniques.

Interpreting ABM Results: This chapter will focus on the methods for analyzing the output of ABM simulations. It will cover data visualization techniques, statistical analysis, and the interpretation of emergent patterns and system-level behavior.

Conclusion and Future Directions: The final chapter will summarize the key concepts and applications of ABM, reflecting on its limitations and potential. It will also look at future trends and research directions in the field.

Agent-Based Modeling: Recent Research and Practical Tips

Recent research in ABM has focused on several key areas:

Improved model calibration and validation: Researchers are developing more sophisticated methods for calibrating ABM parameters and validating model predictions against real-world data. This includes Bayesian methods and advanced statistical techniques.

Agent heterogeneity and adaptive behavior: There's growing interest in modeling agents with diverse characteristics and adaptive behaviors, which leads to more realistic and nuanced simulations. This often involves incorporating machine learning techniques to allow agents to learn and adapt based on their experiences.

Spatiotemporal dynamics: Researchers are exploring the role of space and time in shaping agent interactions and emergent patterns. This includes the use of geographic information systems (GIS) and advanced spatial modeling techniques.

Coupling ABM with other modeling approaches: There's an increasing trend towards integrating ABM with other modeling techniques, such as network analysis and system dynamics, to create more comprehensive and powerful models. This allows for a more holistic understanding of complex systems.

Application in diverse fields: ABM's applications continue to expand, with recent advancements in fields such as epidemiology, urban planning, and climate change modeling.

Practical Tips for Successful ABM:

Start simple: Begin with a simple model before adding complexity. This allows for easier debugging and understanding of the model's behavior.

Clearly define agents and their interactions: Precisely define the agents, their attributes, and the rules governing their interactions. Ambiguity can lead to unreliable results.

Validate your model: Rigorously validate your model against real-world data or established theories. Use visualization effectively: Employ clear and informative visualizations to communicate your model's results.

Document your model: Maintain comprehensive documentation of your model's structure, parameters, and assumptions.

FAQs

- 1. What is the difference between agent-based modeling and system dynamics? ABM focuses on individual agent interactions, while system dynamics uses differential equations to model overall system behavior.
- 2. What software is best for agent-based modeling? NetLogo is popular for its user-friendliness, but other options include MASON, Repast Simphony, and AnyLogic. The best choice depends on the complexity and specific needs of your model.
- 3. How do I validate an agent-based model? Validation involves comparing model outputs to real-world data or established theories through methods like sensitivity analysis and statistical comparison.
- 4. What are emergent properties in agent-based modeling? Emergent properties are system-level behaviors that arise from the interactions of individual agents, but are not explicitly programmed into the individual agents.
- 5. Can agent-based modeling predict the future? ABM can simulate potential future scenarios based on certain assumptions, but it cannot definitively predict the future due to inherent uncertainties and complexities.
- 6. How do I handle large-scale agent-based models? Large-scale models require careful consideration of computational resources and the use of parallel processing techniques.

- 7. What are some common pitfalls in agent-based modeling? Oversimplification of agent behavior, inadequate model validation, and misinterpretation of results are common pitfalls.
- 8. Where can I find data for agent-based modeling? Data sources vary widely depending on the application, but include public datasets, research publications, and simulations.
- 9. What are the ethical considerations of agent-based modeling? Ethical considerations focus on responsible use of data, avoiding bias in model design, and transparent communication of results and their limitations.

Related Articles:

- 1. Agent-Based Modeling for Socioeconomic Systems: Explores the applications of ABM in understanding social and economic phenomena.
- 2. A Beginner's Guide to NetLogo: A step-by-step tutorial on using NetLogo for agent-based modeling.
- 3. Validation and Verification Techniques in Agent-Based Modeling: A deep dive into the methodologies used to ensure the accuracy of ABM models.
- 4. Agent-Based Modeling of Epidemic Spread: Examines the use of ABM in simulating the spread of infectious diseases.
- 5. The Role of Agent Heterogeneity in Agent-Based Models: Discusses the importance of incorporating diversity in agent characteristics.
- 6. Agent-Based Modeling and Urban Planning: Explores the application of ABM in designing and managing urban environments.
- 7. Advanced Techniques in Agent-Based Modeling: Covers topics like agent learning, multi-agent systems, and complex network structures.
- 8. Comparing Agent-Based Modeling with Other Simulation Techniques: A comparative analysis of ABM with system dynamics and other simulation methods.
- 9. Case Studies in Agent-Based Modeling: Examples from Biology and Ecology: Showcases successful ABM applications in the life sciences.

an introduction to agent based modeling wilensky pdf: An Introduction to Agent-Based Modeling Uri Wilensky, William Rand, 2015-04-03 A comprehensive and hands-on introduction to the core concepts, methods, and applications of agent-based modeling, including detailed NetLogo examples. The advent of widespread fast computing has enabled us to work on more complex problems and to build and analyze more complex models. This book provides an introduction to one of the primary methodologies for research in this new field of knowledge. Agent-based modeling (ABM) offers a new way of doing science: by conducting computer-based experiments. ABM is applicable to complex systems embedded in natural, social, and engineered contexts, across domains that range from engineering to ecology. An Introduction to Agent-Based Modeling offers a comprehensive description of the core concepts, methods, and applications of ABM. Its hands-on approach—with hundreds of examples and exercises using NetLogo—enables readers to begin constructing models immediately, regardless of experience or discipline. The book first describes the nature and rationale of agent-based modeling, then presents the methodology for designing and building ABMs, and finally discusses how to utilize ABMs to answer complex questions. Features in

each chapter include step-by-step guides to developing models in the main text; text boxes with additional information and concepts; end-of-chapter explorations; and references and lists of relevant reading. There is also an accompanying website with all the models and code.

an introduction to agent based modeling wilensky pdf: Agent-Based and Individual-Based Modeling Steven F. Railsback, Volker Grimm, 2012 Agent-based modeling is a new technique for understanding how the dynamics of biological, social, and other complex systems arise from the characteristics and behaviors of the agents making up these systems. This innovative textbook gives students and scientists the skills to design, implement, and analyze agent-based models. It starts with the fundamentals of modeling and provides an introduction to NetLogo, an easy-to-use, free, and powerful software platform. Nine chapters then each introduce an important modeling concept and show how to implement it using NetLogo. The book goes on to present strategies for finding the right level of model complexity and developing theory for agent behavior, and for analyzing and learning from models. Agent-Based and Individual-Based Modeling features concise and accessible text, numerous examples, and exercises using small but scientific models. The emphasis throughout is on analysis--such as software testing, theory development, robustness analysis, and understanding full models--and on design issues like optimizing model structure and finding good parameter values. The first hands-on introduction to agent-based modeling, from conceptual design to computer implementation to parameterization and analysis Provides an introduction to NetLogo with nine chapters introducing an important modeling concept and showing how to implement it using NetLogo Filled with examples and exercises, with updates and supplementary materials at http://www.railsback-grimm-abm-book.com/ Designed for students and researchers across the biological and social sciences Written by leading practitioners Leading universities that have adopted this book include: Amherst College Brigham Young University Carnegie Mellon University Cornell University Miami University Northwestern University Old Dominion University Portland State University Rhodes College Susquehanna University University College, Dublin University of Arizona University of British Columbia University of Michigan University of South Florida University of Texas at Austin University of Virginia

an introduction to agent based modeling wilensky pdf: Agent-Based Modeling for Archaeology Iza Romanowska, Colin D. Wren, Stefani A. Crabtree, 2021-08-02 To fully understand not only the past, but also the trajectories, of human societies, we need a more dynamic view of human social systems. Agent-based modeling (ABM), which can create fine-scale models of behavior over time and space, may reveal important, general patterns of human activity. Agent-Based Modeling for Archaeology is the first ABM textbook designed for researchers studying the human past. Appropriate for scholars from archaeology, the digital humanities, and other social sciences, this book offers novices and more experienced ABM researchers a modular approach to learning ABM and using it effectively. Readers will find the necessary background, discussion of modeling techniques and traps, references, and algorithms to use ABM in their own work. They will also find engaging examples of how other scholars have applied ABM, ranging from the study of the intercontinental migration pathways of early hominins, to the weather-crop-population cycles of the American Southwest, to the trade networks of Ancient Rome. This textbook provides the foundations needed to simulate the complexity of past human societies, offering researchers a richer understanding of the past—and likely future—of our species.

an introduction to agent based modeling wilensky pdf: Perfect Order J. Stephen Lansing, 2012-09-16 Along rivers in Bali, small groups of farmers meet regularly in water temples to manage their irrigation systems. They have done so for a thousand years. Over the centuries, water temple networks have expanded to manage the ecology of rice terraces at the scale of whole watersheds. Although each group focuses on its own problems, a global solution nonetheless emerges that optimizes irrigation flows for everyone. Did someone have to design Bali's water temple networks, or could they have emerged from a self-organizing process? Perfect Order--a groundbreaking work at the nexus of conservation, complexity theory, and anthropology--describes a series of fieldwork projects triggered by this question, ranging from the archaeology of the water temples to their

ecological functions and their place in Balinese cosmology. Stephen Lansing shows that the temple networks are fragile, vulnerable to the cross-currents produced by competition among male descent groups. But the feminine rites of water temples mirror the farmers' awareness that when they act in unison, small miracles of order occur regularly, as the jewel-like perfection of the rice terraces produces general prosperity. Much of this is barely visible from within the horizons of Western social theory. The fruit of a decade of multidisciplinary research, this absorbing book shows that even as researchers probe the foundations of cooperation in the water temple networks, the very existence of the traditional farming techniques they represent is threatened by large-scale development projects.

an introduction to agent based modeling wilensky pdf: Agent-Based Models of Geographical Systems Alison J. Heppenstall, Andrew T. Crooks, Linda M. See, Michael Batty, 2011-11-24 This unique book brings together a comprehensive set of papers on the background, theory, technical issues and applications of agent-based modelling (ABM) within geographical systems. This collection of papers is an invaluable reference point for the experienced agent-based modeller as well those new to the area. Specific geographical issues such as handling scale and space are dealt with as well as practical advice from leading experts about designing and creating ABMs, handling complexity, visualising and validating model outputs. With contributions from many of the world's leading research institutions, the latest applied research (micro and macro applications) from around the globe exemplify what can be achieved in geographical context. This book is relevant to researchers, postgraduate and advanced undergraduate students, and professionals in the areas of quantitative geography, spatial analysis, spatial modelling, social simulation modelling and geographical information sciences.

an introduction to agent based modeling wilensky pdf: Agent-Based Modelling and Geographical Information Systems Andrew Crooks, Nicolas Malleson, Ed Manley, Alison Heppenstall, 2019-01-16 This is the era of Big Data and computational social science. It is an era that requires tools which can do more than visualise data but also model the complex relation between data and human action, and interaction. Agent-Based Models (ABM) - computational models which simulate human action and interaction - do just that. This textbook explains how to design and build ABM and how to link the models to Geographical Information Systems. It guides you from the basics through to constructing more complex models which work with data and human behaviour in a spatial context. All of the fundamental concepts are explained and related to practical examples to facilitate learning (with models developed in NetLogo with all code examples available on the accompanying website). You will be able to use these models to develop your own applications and link, where appropriate, to Geographical Information Systems. All of the key ideas and methods are explained in detail: geographical modelling; an introduction to ABM; the fundamentals of Geographical Information Science; why ABM and GIS; using OGIS; designing and building an ABM; calibration and validation; modelling human behavior. An applied primer, that provides fundamental knowledge and practical skills, it will provide you with the skills to build and run your own models, and to begin your own research projects.

an introduction to agent based modeling wilensky pdf: Agent-based Modeling and Simulation S. Taylor, 2014-08-27 Operational Research (OR) deals with the use of advanced analytical methods to support better decision-making. It is multidisciplinary with strong links to management science, decision science, computer science and many application areas such as engineering, manufacturing, commerce and healthcare. In the study of emergent behaviour in complex adaptive systems, Agent-based Modelling & Simulation (ABMS) is being used in many different domains such as healthcare, energy, evacuation, commerce, manufacturing and defense. This collection of articles presents a convenient introduction to ABMS with papers ranging from contemporary views to representative case studies. The OR Essentials series presents a unique cross-section of high quality research work fundamental to understanding contemporary issues and research across a range of Operational Research (OR) topics. It brings together some of the best research papers from the esteemed Operational Research Society and its associated journals, also

published by Palgrave Macmillan.

an introduction to agent based modeling wilensky pdf: Agent-Based Models of Social Life Michael Laver, 2020-04-16 Social interactions are rich, complex, and dynamic. One way to understand these is to model interactions that fascinate us. Some of the more realistic and powerful models are computer simulations. Simple, elegant and powerful, tools are available in user-friendly free software to help you design, build and run your own models of social interactions that intrigue you, and do this on the most basic laptop computer. Focusing on a well-known model of housing segregation, this Element is about how to unleash that power, setting out the fundamentals of what is now known as 'agent based modeling'.

an introduction to agent based modeling wilensky pdf: Simulation For The Social Scientist Gilbert, Nigel, Troitzsch, Klaus, 2005-02-01 Social sciences -- Simulation methods. Social interaction -- Computer simulation. Social sciences -- Mathematical models. (publisher)

an introduction to agent based modeling wilensky pdf: Numerical Modelling and Design of Electrical Machines and Devices Kay Hameyer, Ronnie Belmans, 1999-05-21 This text provides an overview of numerical field computational methods and, in particular, of the finite element method (FEM) in magnetics. Detailed attention is paid to the practical use of the FEM in designing electromagnetic devices such as motors, transformers and actuators. Based on the authors' extensive experience of teaching numerical techniques to students and design engineers, the book is ideal for use as a text at undergraduate and graduate level, or as a primer for practising engineers who wish to learn the fundamentals and immediately apply these to actual design problems. Contents: Introduction; Computer Aided Design in Magnetics; Electromagnetic Fields; Potentials and Formulations; Field Computation and Numerical Techniques; Coupled Field Problems; Numerical Optimisation; Linear System Equation Solvers; Modelling of Electrostatic and Magnetic Devices; Examples of Computed Models.

an introduction to agent based modeling wilensky pdf: Engineering Principles of Combat Modeling and Distributed Simulation Andreas Tolk, 2012-03-20 Explore the military and combat applications of modeling and simulation Engineering Principles of Combat Modeling and Distributed Simulation is the first book of its kind to address the three perspectives that simulation engineers must master for successful military and defense related modeling: the operational view (what needs to be modeled); the conceptual view (how to do combat modeling); and the technical view (how to conduct distributed simulation). Through methods from the fields of operations research, computer science, and engineering, readers are guided through the history, current training practices, and modern methodology related to combat modeling and distributed simulation systems. Comprised of contributions from leading international researchers and practitioners, this book provides a comprehensive overview of the engineering principles and state-of-the-art methods needed to address the many facets of combat modeling and distributed simulation and features the following four sections: Foundations introduces relevant topics and recommended practices, providing the needed basis for understanding the challenges associated with combat modeling and distributed simulation. Combat Modeling focuses on the challenges in human, social, cultural, and behavioral modeling such as the core processes of move, shoot, look, and communicate within a synthetic environment and also equips readers with the knowledge to fully understand the related concepts and limitations. Distributed Simulation introduces the main challenges of advanced distributed simulation, outlines the basics of validation and verification, and exhibits how these systems can support the operational environment of the warfighter. Advanced Topics highlights new and developing special topic areas, including mathematical applications fo combat modeling; combat modeling with high-level architecture and base object models; and virtual and interactive digital worlds. Featuring practical examples and applications relevant to industrial and government audiences, Engineering Principles of Combat Modeling and Distributed Simulation is an excellent resource for researchers and practitioners in the fields of operations research, military modeling, simulation, and computer science. Extensively classroom tested, the book is also ideal for courses on modeling and simulation; systems engineering; and combat modeling at the graduate level.

an introduction to agent based modeling wilensky pdf: Artificial Economics Ruben Mercado, 2021-11-04 An introductory overview of the methods, models and interdisciplinary links of artificial economics. Addresses the differences between the assumptions and methods of artificial economics and those of mainstream economics. This is one of the first books to fully address, in an intuitive and conceptual form, this new way of doing economics.

an introduction to agent based modeling wilensky pdf: Social-Behavioral Modeling for Complex Systems Paul K. Davis, Angela O'Mahony, Jonathan Pfautz, 2019-03-18 This volume describes frontiers in social-behavioral modeling for contexts as diverse as national security, health, and on-line social gaming. Recent scientific and technological advances have created exciting opportunities for such improvements. However, the book also identifies crucial scientific, ethical, and cultural challenges to be met if social-behavioral modeling is to achieve its potential. Doing so will require new methods, data sources, and technology. The volume discusses these, including those needed to achieve and maintain high standards of ethics and privacy. The result should be a new generation of modeling that will advance science and, separately, aid decision-making on major social and security-related subjects despite the myriad uncertainties and complexities of social phenomena. Intended to be relatively comprehensive in scope, the volume balances theory-driven, data-driven, and hybrid approaches. The latter may be rapidly iterative, as when artificial-intelligence methods are coupled with theory-driven insights to build models that are sound, comprehensible and usable in new situations. With the intent of being a milestone document that sketches a research agenda for the next decade, the volume draws on the wisdom, ideas and suggestions of many noted researchers who draw in turn from anthropology, communications, complexity science, computer science, defense planning, economics, engineering, health systems, medicine, neuroscience, physics, political science, psychology, public policy and sociology. In brief, the volume discusses: Cutting-edge challenges and opportunities in modeling for social and behavioral science Special requirements for achieving high standards of privacy and ethics New approaches for developing theory while exploiting both empirical and computational data Issues of reproducibility, communication, explanation, and validation Special requirements for models intended to inform decision making about complex social systems

an introduction to agent based modeling wilensky pdf: Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices Christina V. Schwarz, Cynthia Passmore, Brian J. Reiser, 2017-01-31 When it's time for a game change, you need a guide to the new rules. Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides a play-by-play understanding of the practices strand of A Framework for K-12 Science Education (Framework) and the Next Generation Science Standards (NGSS). Written in clear, nontechnical language, this book provides a wealth of real-world examples to show you what's different about practice-centered teaching and learning at all grade levels. The book addresses three important questions: 1. How will engaging students in science and engineering practices help improve science education? 2. What do the eight practices look like in the classroom? 3. How can educators engage students in practices to bring the NGSS to life? Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices was developed for K-12 science teachers, curriculum developers, teacher educators, and administrators. Many of its authors contributed to the Framework's initial vision and tested their ideas in actual science classrooms. If you want a fresh game plan to help students work together to generate and revise knowledge—not just receive and repeat information—this book is for you.

an introduction to agent based modeling wilensky pdf: Technology-Enhanced Learning Nicolas Balacheff, Sten Ludvigsen, Ton de de Jong, Ard Lazonder, Sally Barnes, 2009-03-24 Technology-enhanced learning is a timely topic, the importance of which is recognized by educational researchers, practitioners, software designers, and policy makers. This volume presents and discusses current trends and issues in technology-enhanced learning from a European research and development perspective. This multifaceted and multidisciplinary topic is considered from four different viewpoints, each of which constitutes a separate section in the book. The sections include

general as well as domain-specific principles of learning that have been found to play a significant role in technology-enhanced environments, ways to shape the environment to optimize learners' interactions and learning, and specific technologies used by the environment to empower learners. An additional section discusses the work presented in the preceding sections from a computer science perspective and an implementation perspective. This book comes out of the work in Kaleidoscope: a European Network of Excellence in which over 1,000 people from more than 90 institutes across Europe participate. Kaleidoscope brings together researchers from diverse disciplines and cultures, through their collaboration and sharing of scientific outcomes, they are helping move the field of technology-enhanced learning forward.

an introduction to agent based modeling wilensky pdf: Handbook of Quantitative Methods for Educational Research Timothy Teo, 2014-02-07 As part of their research activities, researchers in all areas of education develop measuring instruments, design and conduct experiments and surveys, and analyze data resulting from these activities. Educational research has a strong tradition of employing state-of-the-art statistical and psychometric (psychological measurement) techniques. Commonly referred to as quantitative methods, these techniques cover a range of statistical tests and tools. Quantitative research is essentially about collecting numerical data to explain a particular phenomenon of interest. Over the years, many methods and models have been developed to address the increasingly complex issues that educational researchers seek to address. This handbook serves to act as a reference for educational researchers and practitioners who desire to acquire knowledge and skills in quantitative methods for data analysis or to obtain deeper insights from published works. Written by experienced researchers and educators, each chapter in this handbook covers a methodological topic with attention paid to the theory, procedures, and the challenges on the use of that particular methodology. It is hoped that readers will come away from each chapter with a greater understanding of the methodology being addressed as well as an understanding of the directions for future developments within that methodological area.

an introduction to agent based modeling wilensky pdf: The Art of Agent-oriented Modeling Leon Sterling, Kuldar Taveter, 2009 The Art of Agent-Oriented Modeling is an introduction to agent-oriented software development for students and for software developers who are interested in learning about new software engineering techniques.--Foreword.

an introduction to agent based modeling wilensky pdf: Assessing the Use of Agent-Based Models for Tobacco Regulation Institute of Medicine, Board on Population Health and Public Health Practice, Committee on the Assessment of Agent-Based Models to Inform Tobacco Product Regulation, 2015-07-17 Tobacco consumption continues to be the leading cause of preventable disease and death in the United States. The Food and Drug Administration (FDA) regulates the manufacture, distribution, and marketing of tobacco products - specifically cigarettes, cigarette tobacco, roll-vour-own tobacco, and smokeless tobacco - to protect public health and reduce tobacco use in the United States. Given the strong social component inherent to tobacco use onset, cessation, and relapse, and given the heterogeneity of those social interactions, agent-based models have the potential to be an essential tool in assessing the effects of policies to control tobacco. Assessing the Use of Agent-Based Models for Tobacco Regulation describes the complex tobacco environment; discusses the usefulness of agent-based models to inform tobacco policy and regulation; presents an evaluation framework for policy-relevant agent-based models; examines the role and type of data needed to develop agent-based models for tobacco regulation; provides an assessment of the agent-based model developed for FDA; and offers strategies for using agent-based models to inform decision making in the future.

an introduction to agent based modeling wilensky pdf: Design of Agent-based Models Tomáš Šalamon, 2011 Although there are plenty of publications dealing with the theory of multi-agent systems and agent-based simulations, information about the practical development of such systems is scarce. The aim of this book is to fill this empty space and to provide knowledge about design and development of agent-based simulations in an easy and comprehensible way. The book begins with the fundamentals of multi-agent systems, agent principles and their interaction,

and goes on to discuss the philosophy of agent-based programming. Agent-based models - like any other scientific method - have drawbacks and limitations, which are presented in the book as well. The main portion of the text is then devoted to a description of methodology and best practices for the design and development of agent-based simulation software. The methodology (called Agentology) guides the reader through the entire development process, from the formal definition of the problem, through conceptual modeling and the selection of the particular development platform, to the programming and debugging of the code itself and the final assessment of the model. The visual language as the means of representation of the conceptual model is included. The reader is also presented with a comparison of present multi-agent development environments and tools, which could be helpful for the selection of appropriate development instruments. Given that the theoretical foundation is presented in an accessible way and supported by many practical examples, figures, schemes and source codes, this publication is especially suitable as a textbook for introductory graduate-level courses on multi-agent systems and agent-based modeling. Besides appealing to students and the scientific community, the monograph can aid software architects and developers who are not familiar with agent principles, conveying valuable insights into this distinct computer paradigm.

an introduction to agent based modeling wilensky pdf: Modeling Populations of Adaptive Individuals Steven F. Railsback, Bret C. Harvey, 2020-05-19 This book offers a new theory for modeling how organisms make tradeoff decisions and how these decisions affect both individuals and populations. Tradeoff decisions (or behaviors) are those that are optimize survival and include behaviors like foraging and reproduction. Existing theories have not painted a complete picture of tradeoff decisions because they only observe how the decisions of an individual affect them rather than how individuals impact, and are impacted by, the behavior of their communities. The authors' theory-which they call state and prediction based theory-uses individual-based models since these models show the complex ways that organisms relate to their environment. The authors' broader approach, one that integrates behavior and population dynamics, allows ecologists to see how individuals make adaptive tradeoff decisions. In simpler terms, this theory does not assume, as the previous models do, that future conditions are fixed, known, and unaffected by the behavior of others. Instead, the authors assume individuals make decisions like people do, which is by forecasting future conditions, using approximation to make good decisions, and updating their choices as conditions change--

an introduction to agent based modeling wilensky pdf: Managing Business Complexity Michael J. North, Charles M. Macal, 2007-03 Agent-based modeling and simulation (ABMS), a way to simulate a large number of choices by individual actors, is one of the most exciting practical developments in business modeling since the invention of relational databases. It represents a new way to understand data and generate information that has never been available before--a way for businesses to view the future and to understand and anticipate the likely effects of their decisions on their markets and industries. It thus promises to have far-reaching effects on the way that businesses in many areas use computers to support practical decision-making. Managing Business Complexity is the first complete business-oriented agent-based modeling and simulation resource. It has three purposes: first, to teach readers how to think about ABMS, that is, about agents and their interactions; second, to teach readers how to explain the features and advantages of ABMS to other people and third, to teach readers how to actually implement ABMS by building agent-based simulations. It is intended to be a complete ABMS resource, accessible to readers who haven't had any previous experience in building agent-based simulations, or any other kinds of models, for that matter. It is also a collection of ABMS business applications resources, all assembled in one place for the first time. In short, Managing Business Complexity addresses who needs ABMS and why, where and when ABMS can be applied to the everyday business problems that surround us, and how specifically to build these powerful agent-based models.

an introduction to agent based modeling wilensky pdf: Agent-Based Modelling of Socio-Technical Systems Koen H. van Dam, Igor Nikolic, Zofia Lukszo, 2012-10-09 Decision

makers in large scale interconnected network systems require simulation models for decision support. The behaviour of these systems is determined by many actors, situated in a dynamic, multi-actor, multi-objective and multi-level environment. How can such systems be modelled and how can the socio-technical complexity be captured? Agent-based modelling is a proven approach to handle this challenge. This book provides a practical introduction to agent-based modelling of socio-technical systems, based on a methodology that has been developed at TU Delft and which has been deployed in a large number of case studies. The book consists of two parts: the first presents the background, theory and methodology as well as practical guidelines and procedures for building models. In the second part this theory is applied to a number of case studies, where for each model the development steps are presented extensively, preparing the reader for creating own models.

an introduction to agent based modeling wilensky pdf: Economics with Heterogeneous Interacting Agents Alessandro Caiani, Alberto Russo, Antonio Palestrini, Mauro Gallegati, 2016-09-21 This book offers a practical guide to Agent Based economic modeling, adopting a "learning by doing" approach to help the reader master the fundamental tools needed to create and analyze Agent Based models. After providing them with a basic "toolkit" for Agent Based modeling, it present and discusses didactic models of real financial and economic systems in detail. While stressing the main features and advantages of the bottom-up perspective inherent to this approach, the book also highlights the logic and practical steps that characterize the model building procedure. A detailed description of the underlying codes, developed using R and C, is also provided. In addition, each didactic model is accompanied by exercises and applications designed to promote active learning on the part of the reader. Following the same approach, the book also presents several complementary tools required for the analysis and validation of the models, such as sensitivity experiments, calibration exercises, economic network and statistical distributions analysis. By the end of the book, the reader will have gained a deeper understanding of the Agent Based methodology and be prepared to use the fundamental techniques required to start developing their own economic models. Accordingly, "Economics with Heterogeneous Interacting Agents" will be of particular interest to graduate and postgraduate students, as well as to academic institutions and lecturers interested in including an overview of the AB approach to economic modeling in their courses.

an introduction to agent based modeling wilensky pdf: Growing Artificial Societies Joshua M. Epstein, Robert Axtell, 1996-10-11 Growing Artificial Societies is a milestone in social science research. It vividly demonstrates the potential of agent-based computer simulation to break disciplinary boundaries. It does this by analyzing in a unified framework the dynamic interactions of such diverse activities as trade, combat, mating, culture, and disease. It is an impressive achievement. -- Robert Axelrod, University of Michigan How do social structures and group behaviors arise from the interaction of individuals? Growing Artificial Societies approaches this question with cutting-edge computer simulation techniques. Fundamental collective behaviors such as group formation, cultural transmission, combat, and trade are seen to emerge from the interaction of individual agents following a few simple rules. In their program, named Sugarscape, Epstein and Axtell begin the development of a bottom up social science that is capturing the attention of researchers and commentators alike. The study is part of the 2050 Project, a joint venture of the Santa Fe Institute, the World Resources Institute, and the Brookings Institution. The project is an international effort to identify conditions for a sustainable global system in the next century and to design policies to help achieve such a system. Growing Artificial Societies is also available on CD-ROM, which includes about 50 animations that develop the scenarios described in the text. Copublished with the Brookings Institution

an introduction to agent based modeling wilensky pdf: Agent-Based Modelling in Economics Lynne Hamill, Nigel Gilbert, 2016-01-19 Agent-based modelling in economics Lynne Hamill and Nigel Gilbert, Centre for Research in Social Simulation (CRESS), University of Surrey, UK New methods of economic modelling have been sought as a result of the global economic downturn in 2008. This unique book highlights the benefits of an agent-based modelling (ABM)

approach. It demonstrates how ABM can easily handle complexity: heterogeneous people, households and firms interacting dynamically. Unlike traditional methods, ABM does not require people or firms to optimise or economic systems to reach equilibrium. ABM offers a way to link micro foundations directly to the macro situation. Key features: Introduces the concept of agent-based modelling and shows how it differs from existing approaches. Provides a theoretical and methodological rationale for using ABM in economics, along with practical advice on how to design and create the models. Each chapter starts with a short summary of the relevant economic theory and then shows how to apply ABM. Explores both topics covered in basic economics textbooks and current important policy themes; unemployment, exchange rates, banking and environmental issues. Describes the models in pseudocode, enabling the reader to develop programs in their chosen language. Supported by a website featuring the NetLogo models described in the book. Agent-based Modelling in Economics provides students and researchers with the skills to design, implement, and analyze agent-based models. Third year undergraduate, master and doctoral students, faculty and professional economists will find this book an invaluable resource.

an introduction to agent based modeling wilensky pdf: Spatial Simulation David O'Sullivan, George L. W. Perry, 2013-08-05 A ground-up approach to explaining dynamic spatial modelling for an interdisciplinary audience. Across broad areas of the environmental and social sciences, simulation models are an important way to study systems inaccessible to scientific experimental and observational methods, and also an essential complement to those more conventional approaches. The contemporary research literature is teeming with abstract simulation models whose presentation is mathematically demanding and requires a high level of knowledge of quantitative and computational methods and approaches. Furthermore, simulation models designed to represent specific systems and phenomena are often complicated, and, as a result, difficult to reconstruct from their descriptions in the literature. This book aims to provide a practical and accessible account of dynamic spatial modelling, while also equipping readers with a sound conceptual foundation in the subject, and a useful introduction to the wide-ranging literature. Spatial Simulation: Exploring Pattern and Process is organised around the idea that a small number of spatial processes underlie the wide variety of dynamic spatial models. Its central focus on three 'building-blocks' of dynamic spatial models - forces of attraction and segregation, individual mobile entities, and processes of spread - guides the reader to an understanding of the basis of many of the complicated models found in the research literature. The three building block models are presented in their simplest form and are progressively elaborated and related to real world process that can be represented using them. Introductory chapters cover essential background topics, particularly the relationships between pattern, process and spatiotemporal scale. Additional chapters consider how time and space can be represented in more complicated models, and methods for the analysis and evaluation of models. Finally, the three building block models are woven together in a more elaborate example to show how a complicated model can be assembled from relatively simple components. To aid understanding, more than 50 specific models described in the book are available online at patternandprocess.org for exploration in the freely available Netlogo platform. This book encourages readers to develop intuition for the abstract types of model that are likely to be appropriate for application in any specific context. Spatial Simulation: Exploring Pattern and Process will be of interest to undergraduate and graduate students taking courses in environmental, social, ecological and geographical disciplines. Researchers and professionals who require a non-specialist introduction will also find this book an invaluable guide to dynamic spatial simulation.

an introduction to agent based modeling wilensky pdf: Changing Minds Andrea A. DiSessa, 2000 How computer technology can transform science education for children.

an introduction to agent based modeling wilensky pdf: ABBA: An Agent-Based Model of the Banking System Mr.Jorge A Chan-Lau, 2017-06-09 A thorough analysis of risks in the banking system requires incorporating banks' inherent heterogeneity and adaptive behavior in response to shocks and changes in business conditions and the regulatory environment. ABBA is an agent-based model for analyzing risks in the banking system in which banks' business decisions drive the

endogenous formation of interbank networks. ABBA allows for a rich menu of banks' decisions, contingent on banks' balance sheet and capital position, including dividend payment rules, credit expansion, and dynamic balance sheet adjustment via risk-weight optimization. The platform serves to illustrate the effect of changes on regulatory requirements on solvency, liquidity, and interconnectedness risk. It could also constitute a basic building block for further development of large, bottom-up agent-based macro-financial models.

an introduction to agent based modeling wilensky pdf: Multi-Agent-Based Simulation Scott Moss, 2001-01-10 This book is devoted to investigating and developing the synergy between software engineering for multi-agent systems and agent-based social simulation; it originates from the Second International Workshop on Multi-Agend-Based Simulation, MABS 2000, held in Boston, MA, USA in July 2000, in conjunction with ICAMS 2000. Besides the thoroughly revised full papers accepted for presentation at the workshop, two invited papers and an introductory survey by one of the volume editors have been added in order to round off the scope and achieve complete coverage of all relevant topics. The book competently surveys the state of the art in the area by offering topical sections on model design issues, applications, simulating social relations and processes, and formal approaches.

an introduction to agent based modeling wilensky pdf: Artificial Intelligence, Learning and Computation in Economics and Finance Ragupathy Venkatachalam, 2023-02-15 This book presents frontier research on the use of computational methods to model complex interactions in economics and finance. Artificial Intelligence, Machine Learning and simulations offer effective means of analyzing and learning from large as well as new types of data. These computational tools have permeated various subfields of economics, finance, and also across different schools of economic thought. Through 16 chapters written by pioneers in economics, finance, computer science, psychology, complexity and statistics/econometrics, the book introduces their original research and presents the findings they have yielded. Theoretical and empirical studies featured in this book draw on a variety of approaches such as agent-based modeling, numerical simulations, computable economics, as well as employing tools from artificial intelligence and machine learning algorithms. The use of computational approaches to perform counterfactual thought experiments are also introduced, which help transcend the limits posed by traditional mathematical and statistical tools. The book also includes discussions on methodology, epistemology, history and issues concerning prediction, validation, and inference, all of which have become pertinent with the increasing use of computational approaches in economic analysis.

an introduction to agent based modeling wilensky pdf: Advanced Geo-Simulation Models Danielle J. Marceau, Itzhak Benenson, 2011-09-09 Geosimulation has recently emerged at the intersection of Geographic Information Science, Complex Systems Theory and Computer Science. Geosimulation aims at understanding the dynamics of complex human-driven spatial systems through the use of spatially ex

an introduction to agent based modeling wilensky pdf: Artificial Morality Peter Danielson, 1992 Explores the role of artificial intelligence in the development of a claim that morality is person made and rational. This book explores the role of artificial intelligence in the development of a claim that morality is person-made and rational. Professor Danielson builds moral robots that do better than amoral competitors in a tournament of games like the Prisoners Dilemma and Chicken. The book thus engages in current controversies over the adequacy of the received theory of rational choice. It sides with Gauthier and McClennan, who extend the devices of rational choice to include moral constraint. Artificial Morality goes further, by promoting communication, testing and copying of principles and by stressing empirical tests.

an introduction to agent based modeling wilensky pdf: Computers and Exploratory Learning Andrea A. DiSessa, Celia Hoyles, Richard Noss, 2012-12-06 Computers are playing a fundamental role in enhancing exploratory learning techniques in education. This volume in the NATO Special Programme on Advanced Educational Technology covers the state of the art in the design and use of computer systems for exploratory learning. Contributed chapters treat principles,

theory, practice, and examples of some of the best contemporary computer-based learning environments: Logo, Boxer, Microworlds, Cabri-Géomètre, Star Logo, Table Top, Geomland, spreadsheets, Function Machines, and others. Emphasis is on mathematics and science education. Synthetic chapters provide an overview of the current scene in computers and exploratory learning, and analyses from the perspectives of epistemology, learning, and socio-cultural studies.

an introduction to agent based modeling wilensky pdf: Computational Thinking Education Siu-Cheung Kong, Harold Abelson, 2019-07-04 This This book is open access under a CC BY 4.0 license. This book offers a comprehensive guide, covering every important aspect of computational thinking education. It provides an in-depth discussion of computational thinking, including the notion of perceiving computational thinking practices as ways of mapping models from the abstraction of data and process structures to natural phenomena. Further, it explores how computational thinking education is implemented in different regions, and how computational thinking is being integrated into subject learning in K-12 education. In closing, it discusses computational thinking from the perspective of STEM education, the use of video games to teach computational thinking, and how computational thinking is helping to transform the quality of the workforce in the textile and apparel industry.

an introduction to agent based modeling wilensky pdf: Urban Informatics Wenzhong Shi, Michael F. Goodchild, Michael Batty, Mei-Po Kwan, Anshu Zhang, 2021-04-06 This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently - to become 'smart' and 'sustainable'. The smart city has guickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of 'big' data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.

an introduction to agent based modeling wilensky pdf: Individual-based Modeling and Ecology Volker Grimm, Steven F. Railsback, 2013-11-28 Individual-based models are an exciting and widely used new tool for ecology. These computational models allow scientists to explore the mechanisms through which population and ecosystem ecology arises from how individuals interact with each other and their environment. This book provides the first in-depth treatment of individual-based modeling and its use to develop theoretical understanding of how ecological systems work, an approach the authors call individual-based ecology.? Grimm and Railsback start with a general primer on modeling: how to design models that are as simple as possible while still allowing specific problems to be solved, and how to move efficiently through a cycle of pattern-oriented model design, implementation, and analysis. Next, they address the problems of theory and conceptual framework for individual-based ecology: What is theory? That is, how do we develop reusable models of how system dynamics arise from characteristics of individuals? What conceptual framework do we use when the classical differential equation framework no longer applies? An extensive review illustrates the ecological problems that have been addressed with individual-based models. The authors then identify how the mechanics of building and using individual-based models differ from those of traditional science, and provide guidance on formulating, programming, and analyzing models. This book will be helpful to ecologists interested in modeling, and to other scientists interested in agent-based modeling.

an introduction to agent based modeling wilensky pdf: Multi-Agent Systems and Agent-Based Simulation Jaime S. Sichman, Rosaria Conte, Nigel Gilbert, 1998-12-18 Fifteen papers were presented at the first workshop on Multi-Agent Systems and Agent-Based Simulation held as part of the Agents World conference in Paris, July 4-- 6, 1998. The workshop was designed to bring together two developing communities: the multi-agent systems researchers who were the core participants at Agents World, and social scientists interested in using MAS as a research tool. Most of the social sciences were represented, with contributions touching on sociology, management science, economics, psychology, environmental science, ecology, and linguistics. The workshop was organised in association with SimSoc, an informal group of social scientists who have arranged an irregular series of influential workshops on using simulation in the social sciences beginning in 1992. While the papers were quite heterogeneous in substantive domain and in their disciplinary origins, there were several themes which recurred during the workshop. One of these was considered in more depth in a round table discussion led by Jim Doran at the end of the workshop on 'Representing cognition for social simulation', which addressed the issue of whether and how cognition should be modelled. Quite divergent views were expressed, with some participants denying that individual cognition needed to be modelled at all, and others arguing that cognition must be at the centre of social simulation.

an introduction to agent based modeling wilensky pdf: Simulating Social Phenomena Rosaria Conte, Rainer Hegselmann, Pietro Terna, 1997-08-19 In this book experts from quite different fields present simulations of social phenomena: economists, sociologists, political scientists, psychologists, cognitive scientists, organisational scientists, decision scientists, geographers, computer scientists, AI and AL scientists, mathematicians and statisticians. They simulate markets, organisations, economic dynamics, coalition formation, the emergence of cooperation and exchange, bargaining, decision making, learning, and adaptation. The history, problems, and perspectives of simulating social phenomena are explicitly discussed.

an introduction to agent based modeling wilensky pdf: Digital Tools and Solutions for Inquiry-Based STEM Learning Levin, Ilya, Tsybulsky, Dina, 2017-03-31 In the digital age, the integration of technology has become a ubiquitous aspect of modern society. These advancements have significantly enhanced the field of education, allowing students to receive a better learning experience. Digital Tools and Solutions for Inquiry-Based STEM Learning is a comprehensive source of scholarly material on the transformation of science education classrooms through the application of technology. Including numerous perspectives on topics such as instructional design, social media, and scientific argumentation, this book is ideally designed for educators, graduate students, professionals, academics, and practitioners interested in the latest developments in the field of STEM education.

an introduction to agent based modeling wilensky pdf: Agent-Based Computational Modelling Francesco C. Billari, 2006-03-13 The present book describes the methodology to set up agent-based models and to study emerging patterns in complex adaptive systems resulting from multi-agent interaction. It offers the application of agent-based models in demography, social and economic sciences and environmental sciences. Examples include population dynamics, evolution of social norms, communication structures, patterns in eco-systems and socio-biology, natural resource management, spread of diseases and development processes. It presents and combines different approaches how to implement agent-based computational models and tools in an integrative manner that can be extended to other cases.

Back to Home: https://new.teachat.com